Exploiting semidefinite relaxations in constraint programming
نویسنده
چکیده
Constraint programming uses enumeration and search tree pruning to solve combinatorial optimization problems. In order to speed up this solution process, we investigate the use of semidefinite relaxations within constraint programming. In principle, we use the solution of a semidefinite relaxation to guide the traversal of the search tree, using a limited discrepancy search strategy. Furthermore, a semidefinite relaxation generally produces a tight bound for the solution value, which improves the pruning behaviour. Experimental results on stable set problem instances and maximum clique problem instances show that constraint programming can indeed greatly benefit from semidefinite relaxations.
منابع مشابه
Semidefinite Programming Relaxations for the Quadratic Assignment Problem
Semideenite programming (SDP) relaxations for the quadratic assignment problem (QAP) are derived using the dual of the (homogenized) Lagrangian dual of appropriate equivalent representations of QAP. These relaxations result in the interesting, special, case where only the dual problem of the SDP relaxation has strict interior, i.e. the Slater constraint qualii-cation always fails for the primal...
متن کاملA semidefinite relaxation scheme for quadratically constrained
Semidefinite optimization relaxations are among the widely used approaches to find global optimal or approximate solutions for many nonconvex problems. Here, we consider a specific quadratically constrained quadratic problem with an additional linear constraint. We prove that under certain conditions the semidefinite relaxation approach enables us to find a global optimal solution of the unde...
متن کاملExact SDP relaxations for classes of nonlinear semidefinite programming problems
An exact semidefinite linear programming (SDP) relaxation of a nonlinear semidefinite programming problem is a highly desirable feature because a semidefinite linear programming problem can efficiently be solved. This paper addresses the basic issue of which nonlinear semidefinite programming problems possess exact SDP relaxations under a constraint qualification. We do this by establishing exa...
متن کاملOn Equivalence of Semidefinite Relaxations for Quadratic Matrix Programming
We analyze two popular semidefinite programming relaxations for quadratically constrained quadratic programs with matrix variables. These relaxations are based on vector lifting and on matrix lifting; they are of different size and expense. We prove, under mild assumptions, that these two relaxations provide equivalent bounds. Thus, our results provide a theoretical guideline for how to choose ...
متن کاملA ug 2 01 2 EXPLOITING SYMMETRIES IN SDP - RELAXATIONS FOR POLYNOMIAL OPTIMIZATION
In this paper we study various approaches for exploiting symmetries in polynomial optimization problems within the framework of semidefinite programming relaxations. Our special focus is on constrained problems especially when the symmetric group is acting on the variables. In particular, we investigate the concept of block decomposition within the framework of constrained polynomial optimizati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers & OR
دوره 33 شماره
صفحات -
تاریخ انتشار 2006